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Abstract 

The nonlinear dynamics of two chaotic systems, namely the optoelectronic feedback (OEFB) and the Lu-Chen 

electronic chaotic system, are simulated and implemented in this work using the Berkeley Madonna software. Control 

parameters and initial conditions have been adjusted to demonstrate transitions from one state to another. Upon 

modifying certain regulating elements, both systems exhibited excessive sensitivity to initial conditions and displayed 

dynamic nonlinear behavior. The OEFB system reveals a homoclinic condition with a Shilnikov attractor as the 

feedback intensity increases. In contrast, the Lu-Chen system exhibits sensitivity to parameters a, b, and c, 

accompanied by multiscroll behavior, as evidenced by time series, the Fast Fourier Transform (FFT), and attractor 

analysis. These results offer potential applications, including data encoding, secure communications, and image 

processing. This research studied the properties of two different chaotic dynamical systems. These two chaotic systems 

are optoelectronic feedback and Chua systems. The results are analyzed, and it is found that the behavior of the Chua 

system changes in the time series, which in turn causes the attractor to change. The results showed a significant 

increase in the Chua system's bandwidth. Studying the different characteristics opens a broad scope for many 

applications, the most important of which is secure communications. 
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1. Introduction 

Chaos theory has garnered significant attention since Lorenz first proposed it in 1963. Over the past decade, 

experiments have validated various approaches for generating optical chaos, including external optical feedback, 

optical injections, and external modulation (Luo et al., 2021). Chaotic systems exhibit hypersensitivity to initial 

conditions due to their non-periodic, noise-like wideband nature. This characteristic enables a deeper understanding 

of seemingly random systems (Jamal et al.2022). The design of hundreds of cryptographic primitives has utilized 
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chaos and nonlinear dynamics in recent decades (Li et al.,2009). Optoelectronic feedback (OEFB) systems exhibit 

nonlinearity in their dynamics, incorporating both optical and electrical components (Chengui et al., 2020). Optical 

physical systems are well-known for their intricate and unpredictable chaotic behavior, capable of introducing 

nonlinear delays (Jacquot et al., 2010). Prominent instances of three-dimensional independent chaotic flows 

encompass the Lorenz, Chen, Lü, and Laminar Chaos systems, characterized by the presence of one or more horseshoe 

or saddle focal points (Raied et al., 2016) (Müller-Bender et al., 2020). The Lu-Chen chaotic system, unveiled in 2002, 

emerged as a specific instance derived from the Lorenz system (Lü et al., 2002) and (Algaba et al., 2013), it holds a 

notable position in controlling nonlinear dynamical systems, with stability, optimality, and uncertainty being crucial 

areas of focus (Ibrahim et al., 2021). The manipulation of control parameters within the Lu-Chen system can impact 

the overall dynamics, representing a noteworthy outcome within control theory (Doungmo et al., 2021). Homoclinic 

orbits, an intriguing facet of chaotic systems as understood by Shil’nikov (Ueta et al., 2000), find applications in 

communications (Dina et al., 2016), the Internet of Things (IoT) devices, wireless communication (Li et al., 2006), 

and various engineering applications. (Wei et al., 2016) examine the multiple-delayed Wang-Chen system with 

concealed chaotic attractors through analytical and numerical methods.  Wang (Wang et al., 2019) subsequently 

develop a novel inductor-free Chua's circuit for producing multi-scroll chaotic attractors. Pehlivan (Pehlivan et al., 

2019) employed differential equations to adjust the scaling of a multiscroll chaotic Lu-Chen system. Trikh (Trikh et 

al., 2022) devised a synchronization technique utilizing fractional inverse matrix projective difference synchronization 

across three parallel chaotic fractional-order systems, grounded in Lyapunov stability theory. The fuzzy controller is 

used to control the behavior of the system based on the several control variables efficiently (Saini D, 2021). The 

synchronization of chaos in two QD-LEDs connected by a unidirectional and bidirectional coupling system is also 

examined in (Kadim et al., 2023). This study compared two chaotic systems with different behaviors, namely Lu-

Chen and OEFB, using Chaos Tools and the Berkeley Madonna software. 

2. Methods 

In the OEFB system, a nonlinear optoelectronic configuration was considered. The photodetector receives the output 

laser light and generates a current proportionate to its optical intensity, as illustrated in Figure 1. The relevant signal 

passes through a variable gain amplifier before being looped back into the laser's injection current. The strength of the 

feedback is determined by the amplifier gain. The laser emits a continuous light of 5 mW at a wavelength of 632.8 

nm. The dynamical sequence represented in the data is observed by maintaining a fixed DC-pump current and 

adjusting the feedback gain. 

      

Figure 1: A sketch illustrating the proposed environment with the OEFB loop 
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The dynamics of photoelectric intensity and charge carriers can be described using the standard single-laser diode rate 

equations 1, 2, and 3, which have been modified to incorporate the current feedback system (Chow et al.,2012). 

𝑑𝑥

𝑑𝑡
= 𝑥(𝑦 − 1)                                                 (1) 

𝑑𝑦

𝑑𝑡
=  𝛾(𝛿0 − 𝑦 + 𝑓(𝑤 + 𝑥) − 𝑥𝑦)              (2) 

𝑑𝑤

𝑑𝑡
= 𝜀(𝑤 + 𝑥)                                                  (3) 

 

Here, ε represents the feedback strength, δ0 is the bias current, and γ is the proportion of the population relaxation 

rate. The intensity of the output laser ray is expressed in the first equation, while the second equation represents the 

inversion of the population. The third equation depicts the feedback necessary for chaos generation. The outcome is a 

tri slow-fast scheme that transitions from a steady stable form to regular intervals of spiking patterns as the current is 

altered. Due to the Lu-Chen system's dynamic limits surpassing those of the power supply, adjustments to the variables 

x, y, and z are essential for electronic circuit implementation and other real-time applications. The nonlinear equations 

of the Lu-Chen system are described in equations 4, 5, and 6 (Liu et al., 2003). 

𝑑𝑥

𝑑𝑡
=  𝑎. 𝑥 + 𝑑1. 𝑦. 𝑧                                (4) 

𝑑𝑦

𝑑𝑡
= 𝑏. 𝑦 + 𝑑2. 𝑥. 𝑧                                 (5) 

𝑑𝑧

𝑑𝑡
= 𝑐. 𝑧 + 𝑑3. 𝑥. 𝑦                                  (6) 

 

With two quadratic nonlinearity terms, these mathematical models describe a brand-new chaotic system in three 

dimensions. The typical parameter values for the chaotic system are d1, d2, d3, a, b, c, which are -1, 1, 1, 5, -10, and 

-3, respectively. The initial conditions x0, y0, z0 are set as -3, 0, 3, respectively. The Lu-Chen design is illustrated in 

Figure 2. 

 

Figure 2: Schematic of the intended electronic oscillator of the Lu-Chen system (Pehlivan et al., 2019). 
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3. Results and discussions 

3.1 Nonlinear behavior of OEFB system 

The theoretical model of the nonlinear system is programmed by Berkeley Madonna software, Figure 3, with the bias 

current δ0 fixed at (1.01747), while ε is varied.  

 

Figure 3: main window of Berkeley Madonna software 

Other parameters are set   a follows: γ = 1 x 10-3, α = 1, s = 11, and the initial conditions are x1 = 0.022, y1 = 1, z1 = 

0.005. The system exhibits a series of steady, periodicity-doubling, and chaotic states with restricted intensity, as 

depicted in Figure 4. At the laser threshold, chaotic behavior arises from the interaction of the dense phase space, 

leading to a supercritical division. The static laser pulse waveform starts to lose stability just above the beam threshold 

due to a supercritical Hopf bifurcation. 

(a)  
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 (b)  

 
  

(c )  

 
  

(d )  

   

 

 ( e) 
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(f) 

   

Figure 4: Z-Y phase of the OEFB system’s response to feedback strength: (a) 1.5e-5, (b) 2.1e-5, (c) 7e-5, (d) 1.2e-4, © 2.3e-4, (f) 3e-4. The 

OEFB system exhibits excitable behavior during periodic, period doubling, and chaotic states. 
 

Figure 4 depicts the nonlinear behavior of the OEFB system. Initially, it exhibits a limit cycle at (a). As the power 

increases (b), it transitions to a state of mixed-mode oscillations (MMOs), progressing through chaotic cases at (c) 

and (d), where the system demonstrates horseshoe-type or Shil'nikov chaos (Ren et al., 2010). The system then returns 

to period doubling and a periodic state at (c) and (f), respectively, while the feedback continues to increase. 

Furthermore, the system was observed to be excessively sensitive to initial conditions, as illustrated in Figure 5. 

 

 

Figure 5. The sensitivity of the system to initial conditions with x1=0.05 (right) and x1=0.022 (left). The same numbers described above 

are used as other factors with ε =1.2e-4. 

Based on the results of the previous paragraphs, we have determined that the period of the phase-space orbit is fully 

determined by the timescale split between the faster SL timescales and the slower AC feedback loop timescales. As 

feedback increases, this split decreases until it becomes too small to support slow-fast relaxation oscillations. 

 

3.2 Nonlinear behavior of Lu-Chen system 

As a result of the simulation, Figure 6 depicts signals in x-y, z-y output phase, and an FFT. The initial conditions for 

this system, init(x), init(y), and init(z), are set at 0.5, 1, and 1, respectively. The values of d1, d2, and d3 are -9.55, 

9.55, and 0.94, respectively. The capacity parameter (c) values were altered, while a and b are fixed at 4.54 and -9.5, 
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respectively. The initial values are x0 = -2.9, y0 = 0.01, and z0 = 2.8. In comparison to the OEFB system, a multiscroll 

chaotic Lu-Chen system was scaled. According to the comparative simulation, the chaotic multiscroll-scaled Lu-Chen 

system exhibits successful scaling and can be implemented in an electronically manufactured circuit. 

 

(a) 

   

(b) 

 
  

 

 (c) 
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(d) 

  
 

 

(e) 

   

(f) 

   

Figure 6: The Z-Y phase space at init(x) = 0.5, init(y) = 1, init(z) = 1, d1 = -9.55, d2 = 9.55, d3 = 0.94, a = 4.54, b = -9.5, x0 = -2.9, y0 = 0.01, z0 

= 2.8 with c values: (a) -0.0059, (b) -0.1, (c) -0.2 limit cycle, (d) -1.5, © -5.6, (f) -5.8 respectively. 

 

Figure 6 displays the nonlinear behavior of the Lu-Chen system, showcasing periodicity with decreasing c (a, b), 

transitioning to a limit cycle (c), followed by chaos (d), and returning to period doubling and periodic states (e, f). 

Additionally, as observed in Figure 7, the system has been found to be sensitive to initial conditions. These results are 

important to be used in the image encoded using computer generated hologram (CGH) technology (Hamadi et al., 

2022). 
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Figure 7: Sensitivity of the Lu-Chen system to shifting initial conditions init(x), init(y), and init(z). Left: 0.5, 1, and 1, respectively. Right: 5×10^-

5, 1×10^-6, and 1×10^-5, respectively. Other parameters with c = -1.5 utilize the same values as before. 

There is a "double scroll" pattern for the Chua system attractor. Similar results are found when merging 

more than one chaotic system, as in (Jamal et al., 2021).  

Table 1 illustrates the impact of feedback strength on the attractor shape. 

 

Table 1: The effect of strength on the shape of the attractor for OEFB and Lu-Chen systems. 

Shape of attractor Feedback 

strength ε 

Control parameter ©  

Steady state Zero zero 

Limit cycle 1.5˟10-5 -0.2 

Mmos 2.1˟10-5 ------ 

Chaotic  1.2˟10-4 -1.5 

Period doubling 2.3˟10-4 -5.6 

periodic 3˟10-4 -5.8 

 The behavior of the bifurcation diagrams for the two systems could be explored by detecting and isolating the peaks. 

These diagrams are shown in Figure 8. 

(a)                                                                           (b) 

   

Figure 8: The bifurcation diagram for the OEFB model (left) and the Lu-Chen model (right). 
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For both systems, Figure 8 displays the obtained results, showcasing Hopf, regular, conserved substrates, and 

chaotic behaviors. Depending on the control parameters (ε and c) of the two systems, their responses transition 

nonlinearly from steady state to periodicity, eventually leading to chaos. A homothetic transition exists in both the 

Lu-Chen and OEFB systems. The criticality of both systems may be very sensitive, quickly shifting between chaotic 

(unstable regime) and periodic (stable regime) states, making them challenging to control. However, once the feedback 

limit is exceeded, the system regains stability or coherency, facilitating easier regulation. A stable periodic limit cycle 

results from Hopf bifurcation in the Chen system due to the destabilization of a fixed point (Ming et al., 2010). 

According to the results, nonlinear oscillators can be effectively controlled to create and manage chaos by 

incorporating most factors into the system, rather than solely adjusting frequency, as demonstrated in (Al Naimee, et 

al., 2021). 

4. Conclusions 

We conducted a study on the nonlinear transitions for chaotic system generation, comparing optoelectronic feedback 

(OEFB) and the Lu-Chen electronic chaotic systems under controlled parameters and initial conditions. In the OEFB 

scenario, the presence of mixed-mode oscillations (MMOs) during transitions and slow-fast chaotic regimes was 

observed. Both systems' behaviors were analyzed through FFT and attractors corresponding to time series, revealing 

a shared characteristic with a homoclinic orbit. Both systems exhibited excessive sensitivity to initial conditions and 

displayed dynamic nonlinear behavior, dependent on changes in certain controlling factors. This behavior was evident 

in the bifurcation patterns of both systems. The Lu-Chen system distinguishes itself from OEFB by featuring a 

multiscroll attractor, whereas OEFB displays a single scroll that meets the Shil'nikov condition, ensuring the existence 

of horseshoe chaos. This work contributes to the utilization of this potential chaotic system in secure communications. 

The limitations of this work include: 

1. Limited Scope: The study compares explicitly optoelectronic feedback (OEFB) and Lu-Chen electronic chaotic 

systems under controlled parameters and initial conditions. As such, the findings may not be generalizable to 

other chaotic systems or scenarios. 

2. Simplified Conditions: The study may oversimplify real-world conditions using controlled and initial parameters. 

Real-world chaotic systems often exhibit complex interactions and variability that may not be fully captured in 

controlled experimental setups. 

3. Dependency on Controlling Factors: The observed dynamic nonlinear behavior of both systems is stated to be 

dependent on changes in certain controlling factors. However, the specific factors and their impact on system 

behavior must be clearly defined and explored in-depth. 

4. Generalizability: The findings may need to be revised in their applicability to broader contexts beyond the specific 

chaotic systems and conditions investigated in the study. Extrapolating the results to different systems or scenarios 

may require further research and validation. 

5. Complexity of Chaotic Systems: Chaotic systems are inherently complex and can exhibit unpredictable behavior, 

sensitivity to initial conditions, and nonlinear dynamics. Understanding and characterizing these systems may 

require more comprehensive analyses and modeling approaches. 
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Future Research Directions: While the study provides valuable insights into the behavior of the studied chaotic 

systems, it suggests potential avenues for future research to explore additional factors, phenomena, or applications.  
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