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Abstract

Deep learning is one of many methods in Artificial Intelligence (Al) that computers can use to process information
like text, images, and audio. This manuscript will focus on image preprocessing, one of the many different techniques
used to modify the neural network model training process, and how it affects the training speed and accuracy of the
neural network. Six different image preprocessing techniques were picked for use in this study: Grayscale, Smoothing,
Unmask Sharpening, Laplacian and Equalization, and Random Cropping and Rotation, all of which were implemented
using Python and the libraries NumPy, OpenCV, and PyTorch. For the dataset, a batch of 10000 images from the
CIFAR10 dataset was used to train the model. This study explored the impact of preprocessing techniques on a deep
learning model employing the RESNET50 architecture. Notable improvements in model accuracy were observed,
particularly with normalization and random cropping accompanied by rotation. The efficiency gains attributed to
preprocessing were highlighted, leading to a more rapid training process and significant resource savings. This
research underscores the importance of thoughtful preprocessing in enhancing the performance of deep learning

models, offering valuable insights for practitioners in image classification tasks.
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1. Introduction

In recent times, computer vision has undergone a significant transformation, primarily due to the remarkable
progress in deep learning. Among the different applications in computer vision, image classification is a crucial and
widely used task. Image classification involves sorting visual data into pre-defined classes or labels, enabling machines
to identify and distinguish objects within images. Deep learning, particularly convolutional neural networks (CNNs),
has emerged as a powerful approach for image classification tasks. The capacity of deep learning models to
automatically learn hierarchical features from raw pixel data has led to unprecedented accuracy and efficiency in
image recognition. This paradigm shift has had a significant impact on various domains, including healthcare,
autonomous vehicles, security, and many others, where precise and rapid image classification is crucial.

Deep learning is one of many methods in Artificial Intelligence (Al) that computers can use to process information
like text, images, and audio (Alkishri et al., 2023). It has been around for a very long time, since the 1940s, and they
have gone through several different phases which has produced a variety of different architectures such as FFNN
(Feed Forward Neural Networks), CNN (Convolutional Neural Network) and RNN (Recurrent Neural Networks)
(Khamis & Yousif, 2022). Evolution strategies (ES) and advanced preprocessing techniques complement each other
in enhancing the accuracy of neural networks (Lapid & Sipper, 2022). Although neural networks are robust in learning
intricate representations from data, their performance relies heavily on the preprocessing of input data. Integrating
evolution strategies into the training process introduces an adaptive and evolutionary dimension, which boosts the
neural network's ability to learn and generalize effectively. Data preprocessing is vital for neural network techniques
to refine raw data and improve learning for better model performance (Zhou et al., 2023). Scaling input features
through normalization and standardization, generating additional training samples through data augmentation, filtering
noise through noise reduction, and feature engineering can significantly boost the neural network's performance.
However, throughout those phases, there was also an evolution in strategies to improve the training outside of
changing/improving the architecture itself, such as data augmentation, early stopping, transfer learning,
hyperparameter tuning and image preprocessing. The one method that stands out is image preprocessing since the
quality of the input data is just as crucial as the quality of the model itself (Hasoon et al., 2011). No matter how good
the model is, if the input data isn’t any good then the results won’t be either, the saying “garbage in, garbage out”
rings a bell here. With the exponential increase in size of neural networks and their processing and data requirements,

there is an ever-increasing need for optimisation of the data itself. Figure 1 shows that there is an exponential increase
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in the number of research papers focusing on image preprocessing for neural networks per year. This paper will be
focusing on evaluating several different preprocessing methods and combinations of them to see if they can improve
the training time and training accuracy of the neural network model. Also, a few different models will be evaluated to

see which ones fit the purpose of this manuscript best, which is the classification of the CIRAF10 dataset.
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Figure 1: Results Returned for searching "image preprocessing neural network" in Google Scholar

2. Literature Survey

Many Many studies examined image classification using different preprocessing and neural network techniques.
Ghandour (Ghandour et al., 2023) investigated the effectiveness of a convolutional neural network (CNN) model for
medical image classification and extraction. They generated consistent feature maps for deep learning-based medical
image fusion and tested the proposed model using various medical imaging methods. The results showed that the
model achieved better image diagnosis and competing quantitative metrics. In 2023, Yogeshwari et al. developed a
neural model to detect plant leaf diseases using deep convolutional neural networks (DCNN). They used various
preprocessing methods and filtering techniques, including a 2D Adaptive Anisotropic diffusion filter and some
enhancement techniques. They also implemented a clustering method based on the Improved Fast Fuzzy C Means
approach. According to their results, the proposed framework was more effective than other classifiers and achieved
better classification results (Yogeshwari & Thailambal, 2023). Seng6z (Sengdz et al., 2022) proposed the use of
CLAHE (Contrast Limited Adaptive Histogram Equalization) to process the images before training the Deep
Convolutional Neural Network on them. They found that there was an improvement of 5% for the F1 score (from 93%

to 98%) for the neural network that was trained on the CLAHE processed images.
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Oztiirk et al. (2018) performed a review study to compare the effect of different levels of Histopathological
processing on the results of a Convolutional Neural Network, with each level adding on extra processing on the
previous level’s results. Their results showed that the normal level of preprocessing performed best. This is because
using too much preprocessing ended up removing important details from the input images that are useful for the neural
network (Oztiirk et al., 2018). Calderon et al. (2018) performed a study to test the effect of using Deceived Non-Local
Means (DNLM) filter as a preprocessing step on a Convolutional Neural Network that is designed to estimate ages. It
was found that using this method gave a 42% lower root mean squared error compared to just using the original data
(Calderon et al., 2018). Atomi (2012) ran a review to determine if the use of data preprocessing techniques is effective
for Artificial Neural Networks. Min-max normalization, Z-Score normalization and decimal scaling normalization
were all used in this study. It was found that there was a significant improvement in the efficiency of the training and
performance of the ANN (Atomi W, 2012). Tabik et al. (2017) reviewed the use of different image preprocessing
techniques on three different CNN based neural networks (LeNet, Network3 and DropConnect). The methods that
were used for the preprocessing were centering, elastic deformation, translation, rotation, and different combinations
of them. In terms of accuracy, most methods had very similar scores to original image (within margin of error).
However, when it comes to training time there was a sizable improvement when using centered image preprocessing
(from 270 to 200 seconds for example) (Tabik et al., 2017). Table 1presents a summary of literature survey studies.
The studies indicate different gaps in evaluating metrics of CNN models, so there is a need for standardized evaluation
metrics. Investigating the generalizability of preprocessing techniques and CNN architectures across diverse domains
could provide valuable insights. Understanding the impact of data characteristics on selecting preprocessing
techniques is crucial. A comprehensive investigation into the robustness of CNNs to noisy data is warranted. There
needs to be more guidance on selecting optimal preprocessing strategies. Exploring hybrid approaches could lead to
more robust preprocessing pipelines. Understanding how preprocessing impacts the interpretability of CNN models
is crucial. A more comprehensive exploration of the computational efficiency of preprocessing techniques is needed.
A meta-analysis or systematic review can provide a comprehensive overview of the current knowledge in image

preprocessing for CNNs.

3. Preprocessing Methods

The implementation for the preprocessing code was written in the Python programming language (Pajankar &

Joshi, 2022). Three libraries were used: Math (for its sin and cos functions), OpenCV (for importing images and
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creating black bordering around images) and NumPy (for manipulating the images as 2D arrays). Eight different
preprocessing methods were proposed and implemented for the purpose of this manuscript: Grayscale, Smoothing,
Unmask Sharpening, Laplacian, Equalization, Random Rotation, Random Cropping and Normalization. For all the
above methods, different loops were used to run through each pixel (or even each RGB channel) and the preprocessing

method was performed on each one (Al-Hatmi & Yousif, 2017).

Table 1: Summary of literature survey studies.

Author

Preprocessing
Method

Neural
Network Model

Results

Ghandour et al.,
2023

Yogeshwari et
al., 2023

Sengoz et al.,
2022

Oztirk et al.,
2018

Calderon et al.,
2018

Tabik et al.,
2017

Atomi W, 2012

Different processing methods

various preprocessing methods;
filtering techniques

CLAHE (Contrast Limited
Adaptive Histogram
Equalization)

Different levels of
Histopathological processing

Deceived Non-Local Means
(DNLM) filter

Centering, elastic
deformation, translation,
rotation, and combinations

Min-max
normalization, Z-Score
normalization, decimal scaling
normalization

Convolutional Neural
Network

Deep convolutional
neural networks +
Fuzzy C Means
approach

Deep Convolutional
Neural Network

Convolutional Neural
Network

Convolutional Neural
Network (for age
estimation)

CNN based neural
networks (LeNet,
Network3,
DropConnect)

Artificial Neural
Networks (ANN)

generate consistent feature
maps; better image diagnosis
and competing quantitative
metrics.

More effective than other
classifiers.

5% improvement in F1 score
(from 93% to 98%) for neural
network trained on CLAHE
processed images

Best performance with normal
preprocessing; excessive
preprocessing led to the
removal of important details
from input images

42% lower root mean squared
error compared to using
original data

Similar accuracy to original
images, but substantial
reduction in training time with
centered image preprocessing

Significant improvement in
training efficiency and
performance of ANN

For the grayscale filter, all the RGB values for a particular pixel are retrieved. Then, the intensity for that pixel
will be calculated using the following equation (1):

Intensity = 0.299*R + 0.587*G + 0.114*B (D
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For the smoothing filter, an average 3x3 box filter was used. A black border was added to the image before
it was processed, so that applying the kernel at the edge pixels will not cause the program to crash. The kernel consists
of a 3x3 matrix that is filled entirely with ones. Since this is an RGB image, this kernel was used for each RGB
channel. The intensities are all added together, and their results are divided by nine to get the average intensity for that

particular colour channel as in equation 2.

L 1 1 1
average intensity = = [1 1 1 - (2)
1 1 1

For the unsharp masking filter, an image with the smoothing filter applied is first created. Since this is an RGB
image, each colour channel will be operated on individually. Then, the following equation is used to calculate the
new intensity: Intensity = 2 * Original — Smoothed.

For Laplacian, a black border is also added to the image since a kernel will be used. The kernel consists of a 3x3
matrix, with a “-4” in the middle and ones all around it horizontally and vertically. Since this is an RGB image, this
kernel was used for each RGB channel. The intensities were all added together to get the new intensity for that

particular channel as in equation (3).

0 1 0
RGB=|1 -4 1 . 03)
0 1 0

For equalization, the process is a little bit more involved. The image is first converted into the HSI colour space
(Hue, Saturation, and Intensity). All the RGB values for a particular pixel are retrieved and the following equations

are applied (4 and 5):

. G . *mi ,G,
Intensity = Rec+B Saturation = 1 — ZWNRGCE) .4
3 R+G+B
Intensity = ReGvB Saturation = 1 — ZRGE) .. (5
3 R+G+B

Hue =360 — Theta |if B> G
This is done for each pixel, resulting in an image in the HSI colour space. After this is done, histogram
equalization is performed only on the Intensity channel of this HSI image using the equation (6):
Intensity = (L — 1) * ¥¥_,pr/rj ... (6)
Where L is the number of light levels, “k” is the total number of different unique intensities, “pr” is number of
pixels of that intensity and “rj” is total number of pixels. Once this is done, then the image needs to be returned to

the RGB colour space (Alighaleh et al., 2022). This is done using the functions defined in equation (7):
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If 0 <=H < 120: If 120 <= H < 240: If240 <=H<360: ...(7)
B=1I(1-15) R=1I(1-8) G=I(1-19)

_ _ScosH _ Scos(H —120°)\ p_7 (1 , Scos(H — 240°))
R_I(1+cos(60°—H)) G_I(1+ cos(180° — H) ) cos(300° — H)
G=3I-(R+B) B=31-(R+0G) R=3I—-(G+B)

For random crops, assuming an image has dimensions (C, H, W), the random cropping operation involves
selecting a top-left pixel position (i, j) and cropping the region of size (crop_h, crop_w). The logic can be expressed
as follows:

e Randomly select 'i' from the range [0, H - crop_h]

e Randomly select 'j' from the range [0, W - crop_w]
e Cropped region = original_image[:, i:i+crop_h, j:j+crop_w]
Continuing with random rotation:
For random rotation, we consider the cropped region obtained from the previous step. The logic for random
rotation can be described as follows:

e Randomly select an angle 'theta’ for rotation.

o Apply rotation to the cropped region using an appropriate rotation function.

The resulting rotated image will be part of the dataset for training or validation. This process introduces
variability and augmentation to the dataset, enhancing the model's ability to generalize to different orientations and

positions of objects in the images.

4. Deep Learning Model

This experiment aims to showcase the results of the most impactful preprocessing techniques. We excluded the
results of some preprocessing methods mentioned above because they gave the same results as the base model. The
focus was on exploring the ones that provided significantly different results.

4.1 Data and System Preparation

The data preparation process is started by loading the base images for the base model. Subsequently, we applied
transformations separately to the data and fed it into the model (Deepa et al., 2023). Additionally, it utilized some
additional functions from PyTorch transformers for further preprocessing techniques that could enhance our results.

The system was configured with CUDA for faster training times than a standard CPU.
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4.2 Model Implementation

To implement our deep learning model, we employed PyTorch to expedite the development process and CUDA to
accelerate training. We opted against creating a custom model from scratch instead of utilizing RESNET50. RESNET,
a residual learning framework, facilitates the training of networks significantly more profoundly than those employed
in prior models (He et al., 2015). Initially designed for classifying the ImageNet dataset, which consists of 1000
different classes, we tailored the model to classify the 10 classes of the CIFAR10 dataset. Rather than training
RESNET50 weights from the ground up, we aimed to leverage the knowledge gained from the thousands of images
in the ImageNet dataset through transfer learning (TL). Our approach involved loading a pre-trained RESNET50

model with weights and adjusting the last layer of the neural network (output layer) to accommodate the 10 classes of

the CIFAR10 dataset instead of the original 1000, as shown in Figure 2.
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Figure 2: ResNet50 — Gorlapraveen123

In summary, our model was built using the RESNET architecture with pre-trained weights (Singh et al., 2023).
We made a specific modification by adjusting the fully connected (FC) layer in the architecture to output 10 classes
instead of the original 1000. The decision to use RESNET and the rationale behind that choice will not be discussed

further, as our focus here is to provide an overview of how we formulated our model for training on the CIFAR10

dataset.

4.3 Training Process

Before training, we observed the most impactful preprocessing technique, rather than the one that produces the best
model. The aim was to understand how preprocessing can significantly influence learning, whether positively or
negatively. To comprehend why preprocessing had a substantial impact on our results, let's briefly delve into how

deep learning models operate. Deep learning models utilize stochastic gradient descent (SGD) to determine the model
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parameters that best fit the relationship between truth and prediction (Haji & Abdulazeez, 2021). This optimization
process relies on derivatives to determine whether to increase or decrease the parameters, ultimately guiding the model
toward the global minimum. However, there is a possibility of the model getting stuck in a local minimum, requiring
the learning process to be reiterated to find a new starting point in the hopes of reaching a lower minimum and
eventually converging (Yousif & AlRababaa, 2013). The data is prepared and fed to the proposed network with

unprocessed images. Subsequently, we introduced various images after applying different preprocessing techniques.
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Figure 3: stochastic gradient descent (Huang et al., 2023)

4.4 Testing Process

It's crucial to use a distinct set of images for testing than the one used for training. This practice is imperative in
machine learning to avoid biased results and prevent a misrepresentation of the model's accuracy. To address this, we
partitioned our images into a 50,000-image training set and separated 10,000-image validation and testing sets. To
ensure consistency, the exact same data was used for evaluating the performance of different preprocessing methods,
minimizing variations in the datasets. The obtained results were interesting, revealing differences between
unprocessed and processed images. The results show that the model accuracy is improved with the following
preprocessing methods:

o Normalization and Histogram Equalization

e Random Cropping & Rotations

e All (combined) 93%

The results achieved after 20 epochs are summarized in Table 2.
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Table 2: A summary of results achieved

Preprocessing Method Testing Accuracy
None 85%
Normalization & Histogram Equalization 91%
Random Cropping & Rotation 89%
ALL 93%

There is a significant jJump in accuracy with preprocessing. After obtaining these results, the study shifted focus
to understanding the reason behind the improved accuracy, as shown in Figure 4. Initially, this study believed
preprocessing directly enhanced our model's accuracy. However, while the results indicate improvement, the enhanced
performance is not solely due to preprocessing; instead, it is attributed to a different factor related to our optimization
method—stochastic gradient descent. To gain deeper insights, we employed Wandb, a popular tool among machine
learning developers, to graph various parameters and results, providing a more intuitive visualization. Examining the
training accuracy graph as shown in Figure 4, we can observe that all models are moving to convergence; even the

one fed with unprocessed data seems like it will converge if we give it more training iterations.

Validation Accuracy
= No Preprocessing = Full Preprocessing Normalization
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Figure 4: The results of model validation accuracy

This experiment likely involves training a machine learning model. By increasing the number of epochs to 120,
the model is given more time to learn from the data and improve its accuracy. The adjustments may have included
changes to the model architecture, hyperparameters, or input data. Figure 6 represents the model's performance, such
as a graph showing how its accuracy or loss changes over time. Eventually, all models would converge, as
experimentation is aimed. The model trained on preprocessed data took 20 epochs, approximately 15 minutes, to

converge, while the one trained on unprocessed data took about 90 epochs, approximately an hour. This represents a
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significant time difference for a relatively small dataset. The difference would be even more pronounced if a larger
dataset was included. As a result, the study provides reasoning for the following preprocessing methods:

normalization, random rotation, and cropping.
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Figure 5: The results of model training accuracy
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Figure 6: The results comparison of model validation accuracy

4.5 Normalization

The goal of normalization is to scale the input data to be on a similar scale. This helps the gradient descent converge
faster (Yousif & Kazem, 2021). If we were to visualize this, it would give the error surface a more circular or spherical
shape as shown in Figure 7. This reduction in curvature minimizes unnecessary steps during gradient descent in the
optimal direction. With fewer curvatures, gradient descent moves toward the global minimum more efficiently (Wang

et al, 2022). It goes directly to the minimum, making the learning process easier for the model.



259

e .
P
i Ry

Gradient of larger parameter Both parameters can be
dominates the update updated in equal proportions

Figure 7: The results comparison of model validation accuracy (Wang et al, 2022)

4.6 Random Cropping and Rotation

There is no concrete reasoning for the improved accuracy when performing random cropping and rotation. The
only theory we have is that our model sees a different form of the same image in every iteration, possibly reducing
overfitting. Overfitting tends to result in very high training accuracy but low testing accuracy because the model is
memorizing the input (Fekihal & Yousif, 2012). By presenting the model with different forms of the same input
through random cropping and rotation, it may prevent overfitting and optimize its parameters more efficiently. This,

in turn, leads to better testing accuracy.

5. Conclusion

This The experimentation with preprocessing techniques on a deep learning model, specifically using RESNET50,
provided notable insights. It observed a significant improvement in model accuracy with specific preprocessing
methods, such as normalization and random cropping with rotation. This is because preprocessing speeds up the
training process and saves computation time and resources. Both models converged, but the preprocessed one took 20
epochs (~15 mins), while the unprocessed one took 90 epochs (~1 hour). This experiment likely involves training a
machine learning model. By increasing the number of epochs to 120, the model is given more time to learn from the
data and improve its accuracy. The adjustments may have included changes to the model architecture,
hyperparameters, or input data. Eventually, all models would converge, as experimentation is aimed. There is a
significant time difference for a relatively small dataset. The difference would be even more pronounced if a more
extensive dataset were included. As a result, the study provides reasoning for implementing different preprocessing

methods, such as normalization, random rotation, and cropping. This study on preprocessing techniques with
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RESNET50 vyielded positive results and insights. However, certain limitations and considerations exist to
acknowledge, such as dataset specificity, task dependency, overfitting concerns, hyperparameter sensitivity, trade-off
analysis, comparison with baseline models, computational resources consideration, generalization to other
architectures, and reproducibility and transparency. The study highlighted that specific preprocessing techniques can
enhance model accuracy on a small dataset. However, it is essential to note that the effectiveness of these techniques
may differ across various datasets. Therefore, evaluating whether the observed improvements apply to larger and more
diverse datasets is essential. Also, the significant decrease in training time observed with preprocessing might lead to
concerns regarding overfitting, especially when working with a smaller dataset. Further analysis, such as validation

on an independent dataset, is necessary to ensure that the improvements are only partially due to overfitting.
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